Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(4): e0204423, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38483171

RESUMEN

The ability of some white rot basidiomycetes to remove lignin selectively from wood indicates that low molecular weight oxidants have a role in ligninolysis. These oxidants are likely free radicals generated by fungal peroxidases from compounds in the biodegrading wood. Past work supports a role for manganese peroxidases (MnPs) in the production of ligninolytic oxidants from fungal membrane lipids. However, the fatty acid alkylperoxyl radicals initially formed during this process are not reactive enough to attack the major structures in lignin. Here, we evaluate the hypothesis that the peroxidation of fatty aldehydes might provide a source of more reactive acylperoxyl radicals. We found that Gelatoporia subvermispora produced trans-2-nonenal, trans-2-octenal, and n-hexanal (a likely metabolite of trans-2,4-decadienal) during the incipient decay of aspen wood. Fungal fatty aldehydes supported the in vitro oxidation by MnPs of a nonphenolic lignin model dimer, and also of the monomeric model veratryl alcohol. Experiments with the latter compound showed that the reactions were partially inhibited by oxalate, the chelator that white rot fungi employ to detach Mn3+ from the MnP active site, but nevertheless proceeded at its physiological concentration of 1 mM. The addition of catalase was inhibitory, which suggests that the standard MnP catalytic cycle is involved in the oxidation of aldehydes. MnP oxidized trans-2-nonenal quantitatively to trans-2-nonenoic acid with the consumption of one O2 equivalent. The data suggest that when Mn3+ remains associated with MnP, it can oxidize aldehydes to their acyl radicals, and the latter subsequently add O2 to become ligninolytic acylperoxyl radicals.IMPORTANCEThe biodegradation of lignin by white rot fungi is essential for the natural recycling of plant biomass and has useful applications in lignocellulose bioprocessing. Although fungal peroxidases have a key role in ligninolysis, past work indicates that biodegradation is initiated by smaller, as yet unidentified oxidants that can infiltrate the substrate. Here, we present evidence that the peroxidase-catalyzed oxidation of naturally occurring fungal aldehydes may provide a source of ligninolytic free radical oxidants.


Asunto(s)
Basidiomycota , Manganeso , Polyporales , Lignina/metabolismo , Proteínas Fúngicas/metabolismo , Basidiomycota/metabolismo , Aldehídos , Peroxidasas/metabolismo , Ácidos Grasos , Oxidantes
2.
Biotechnol Biofuels ; 14(1): 105, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33902680

RESUMEN

BACKGROUND: On-site enzyme production using Trichoderma reesei can improve yields and lower the overall cost of lignocellulose saccharification by exploiting the fungal gene regulatory mechanism that enables it to continuously adapt enzyme secretion to the substrate used for cultivation. To harness this, the interrelation between substrate characteristics and fungal response must be understood. However, fungal morphology or gene expression studies often lack structural and chemical substrate characterization. Here, T. reesei QM6a was cultivated on three softwood substrates: northern bleached softwood Kraft pulp (NBSK) and lodgepole pine pretreated either by dilute-acid-catalyzed steam pretreatment (LP-STEX) or mild alkaline oxidation (LP-ALKOX). With different pretreatments of similar starting materials, we presented the fungus with systematically modified substrates. This allowed the elucidation of substrate-induced changes in the fungal response and the testing of the secreted enzymes' hydrolytic strength towards the same substrates. RESULTS: Enzyme activity time courses correlated with hemicellulose content and cellulose accessibility. Specifically, increased amounts of side-chain-cleaving hemicellulolytic enzymes in the protein produced on the complex substrates (LP-STEX; LP-ALKOX) was observed by secretome analysis. Confocal laser scanning micrographs showed that fungal micromorphology responded to changes in cellulose accessibility and initial culture viscosity. The latter was caused by surface charge and fiber dimensions, and likely restricted mass transfer, resulting in morphologies of fungi in stress. Supplementing a basic cellulolytic enzyme mixture with concentrated T. reesei supernatant improved saccharification efficiencies of the three substrates, where cellulose, xylan, and mannan conversion was increased by up to 27, 45, and 2800%, respectively. The improvement was most pronounced for proteins produced on LP-STEX and LP-ALKOX on those same substrates, and in the best case, efficiencies reached those of a state-of-the-art commercial enzyme preparation. CONCLUSION: Cultivation of T. reesei on LP-STEX and LP-ALKOX produced a protein mixture that increased the hydrolytic strength of a basic cellulase mixture to state-of-the-art performance on softwood substrates. This suggests that the fungal adaptation mechanism can be exploited to achieve enhanced performance in enzymatic hydrolysis without a priori knowledge of specific substrate requirements.

3.
J Biol Chem ; 293(13): 4702-4712, 2018 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-29462790

RESUMEN

Peroxidases are considered essential agents of lignin degradation by white-rot basidiomycetes. However, low-molecular-weight oxidants likely have a primary role in lignin breakdown because many of these fungi delignify wood before its porosity has sufficiently increased for enzymes to infiltrate. It has been proposed that lignin peroxidases (LPs, EC 1.11.1.14) fulfill this role by oxidizing the secreted fungal metabolite veratryl alcohol (VA) to its aryl cation radical (VA+•), releasing it to act as a one-electron lignin oxidant within woody plant cell walls. Here, we attached the fluorescent oxidant sensor BODIPY 581/591 throughout beads with a nominal porosity of 6 kDa and assessed whether peroxidase-generated aryl cation radical systems could oxidize the beads. As positive control, we used the 1,2,4,5-tetramethoxybenzene (TMB) cation radical, generated from TMB by horseradish peroxidase. This control oxidized the beads to depths that increased with the amount of oxidant supplied, ultimately resulting in completely oxidized beads. A reaction-diffusion computer model yielded oxidation profiles that were within the 95% confidence intervals for the data. By contrast, bead oxidation caused by VA and the LPA isozyme of Phanerochaete chrysosporium was confined to a shallow shell of LP-accessible volume at the bead surface, regardless of how much oxidant was supplied. This finding contrasted with the modeling results, which showed that if the LP/VA system were to release VA+•, it would oxidize the bead interiors. We conclude that LPA releases insignificant quantities of VA+• and that a different mechanism produces small ligninolytic oxidants during white rot.


Asunto(s)
Alcoholes Bencílicos/química , Radicales Libres/química , Proteínas Fúngicas/química , Peroxidasas/química , Polyporales/enzimología , Oxidación-Reducción
4.
Sci Adv ; 3(5): e1603301, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28560350

RESUMEN

The production of renewable chemicals and biofuels must be cost- and performance- competitive with petroleum-derived equivalents to be widely accepted by markets and society. We propose a biomass conversion strategy that maximizes the conversion of lignocellulosic biomass (up to 80% of the biomass to useful products) into high-value products that can be commercialized, providing the opportunity for successful translation to an economically viable commercial process. Our fractionation method preserves the value of all three primary components: (i) cellulose, which is converted into dissolving pulp for fibers and chemicals production; (ii) hemicellulose, which is converted into furfural (a building block chemical); and (iii) lignin, which is converted into carbon products (carbon foam, fibers, or battery anodes), together producing revenues of more than $500 per dry metric ton of biomass. Once de-risked, our technology can be extended to produce other renewable chemicals and biofuels.

5.
PLoS One ; 11(7): e0159715, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27454126

RESUMEN

Colonization of wood blocks by brown and white rot fungi rapidly resulted in detectable wood oxidation, as shown by a reduced phloroglucinol response, a loss of autofluorescence, and acridine orange (AO) staining. This last approach is shown to provide a novel method for identifying wood oxidation. When lignin was mildly oxidized, the association between AO and lignin was reduced such that stained wood sections emitted less green light during fluorescence microscopy. This change was detectable after less than a week, an interval that past work has shown to be too short for significant delignification of wood. Although fungal hyphae were observed in only a few wood lumina, oxidation was widespread, appearing relatively uniform over regions several hundred micrometers from the hyphae. This observation suggests that both classes of fungi release low molecular weight mild oxidants during the first few days of colonization.


Asunto(s)
Naranja de Acridina/metabolismo , Pared Celular/metabolismo , Pared Celular/microbiología , Hongos , Oxidación-Reducción , Madera/metabolismo , Madera/microbiología
6.
Appl Environ Microbiol ; 81(22): 7802-12, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26341198

RESUMEN

Since uncertainty remains about how white rot fungi oxidize and degrade lignin in wood, it would be useful to monitor changes in fungal gene expression during the onset of ligninolysis on a natural substrate. We grew Phanerochaete chrysosporium on solid spruce wood and included oxidant-sensing beads bearing the fluorometric dye BODIPY 581/591 in the cultures. Confocal fluorescence microscopy of the beads showed that extracellular oxidation commenced 2 to 3 days after inoculation, coincident with cessation of fungal growth. Whole transcriptome shotgun sequencing (RNA-seq) analyses based on the v.2.2 P. chrysosporium genome identified 356 genes whose transcripts accumulated to relatively high levels at 96 h and were at least four times the levels found at 40 h. Transcripts encoding some lignin peroxidases, manganese peroxidases, and auxiliary enzymes thought to support their activity showed marked apparent upregulation. The data were also consistent with the production of ligninolytic extracellular reactive oxygen species by the action of manganese peroxidase-catalyzed lipid peroxidation, cellobiose dehydrogenase-catalyzed Fe(3+) reduction, and oxidase-catalyzed H2O2 production, but the data do not support a role for iron-chelating glycopeptides. In addition, transcripts encoding a variety of proteins with possible roles in lignin fragment uptake and processing, including 27 likely transporters and 18 cytochrome P450s, became more abundant after the onset of extracellular oxidation. Genes encoding cellulases showed little apparent upregulation and thus may be expressed constitutively. Transcripts corresponding to 165 genes of unknown function accumulated more than 4-fold after oxidation commenced, and some of them may merit investigation as possible contributors to ligninolysis.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Lignina/metabolismo , Phanerochaete/genética , Madera/microbiología , Fluorometría , Microesferas , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidación-Reducción , Phanerochaete/metabolismo , Picea/microbiología , Análisis de Secuencia de ARN
7.
Appl Environ Microbiol ; 80(24): 7536-44, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25261514

RESUMEN

The white rot basidiomycete Ceriporiopsis subvermispora delignifies wood selectively and has potential biotechnological applications. Its ability to remove lignin before the substrate porosity has increased enough to admit enzymes suggests that small diffusible oxidants contribute to delignification. A key question is whether these unidentified oxidants attack lignin via single-electron transfer (SET), in which case they are expected to cleave its propyl side chains between Cα and Cß and to oxidize the threo-diastereomer of its predominating ß-O-4-linked structures more extensively than the corresponding erythro-diastereomer. We used two-dimensional solution-state nuclear magnetic resonance (NMR) techniques to look for changes in partially biodegraded lignin extracted from spruce wood after white rot caused by C. subvermispora. The results showed that (i) benzoic acid residues indicative of Cα-Cß cleavage were the major identifiable truncated structures in lignin after decay and (ii) depletion of ß-O-4-linked units was markedly diastereoselective with a threo preference. The less selective delignifier Phanerochaete chrysosporium also exhibited this diastereoselectivity on spruce, and a P. chrysosporium lignin peroxidase operating in conjunction with the P. chrysosporium metabolite veratryl alcohol did likewise when cleaving synthetic lignin in vitro. However, C. subvermispora was significantly more diastereoselective than P. chrysosporium or lignin peroxidase-veratryl alcohol. Our results show that the ligninolytic oxidants of C. subvermispora are collectively more diastereoselective than currently known fungal ligninolytic oxidants and suggest that SET oxidation is one of the chemical mechanisms involved.


Asunto(s)
Coriolaceae/metabolismo , Lignina/metabolismo , Oxidantes/química , Oxidantes/metabolismo , Picea/microbiología , Madera/microbiología , Biodegradación Ambiental , Coriolaceae/enzimología , Proteínas Fúngicas/metabolismo , Lignina/química , Estructura Molecular , Oxidación-Reducción , Peroxidasas/metabolismo , Phanerochaete/metabolismo , Picea/metabolismo , Madera/metabolismo
8.
Appl Environ Microbiol ; 79(7): 2377-83, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23377930

RESUMEN

Basidiomycetes that cause brown rot of wood are essential biomass recyclers in coniferous forest ecosystems and a major cause of failure in wooden structures. Recent work indicates that distinct lineages of brown rot fungi have arisen independently from ligninolytic white rot ancestors via loss of lignocellulolytic enzymes. Brown rot thus proceeds without significant lignin removal, apparently beginning instead with oxidative attack on wood polymers by Fenton reagent produced when fungal hydroquinones or catechols reduce Fe(3+) in colonized wood. Since there is little evidence that white rot fungi produce these metabolites, one question is the extent to which independent lineages of brown rot fungi may have evolved different Fe(3+) reductants. Recently, the catechol variegatic acid was proposed to drive Fenton chemistry in Serpula lacrymans, a brown rot member of the Boletales (D. C. Eastwood et al., Science 333:762-765, 2011). We found no variegatic acid in wood undergoing decay by S. lacrymans. We found also that variegatic acid failed to reduce in vitro the Fe(3+) oxalate chelates that predominate in brown-rotting wood and that it did not drive Fenton chemistry in vitro under physiological conditions. Instead, the decaying wood contained physiologically significant levels of 2,5-dimethoxyhydroquinone, a reductant with a demonstrated biodegradative role when wood is attacked by certain brown rot fungi in two other divergent lineages, the Gloeophyllales and Polyporales. Our results suggest that the pathway for 2,5-dimethoxyhydroquinone biosynthesis may have been present in ancestral white rot basidiomycetes but do not rule out the possibility that it appeared multiple times via convergent evolution.


Asunto(s)
Basidiomycota/metabolismo , Hidroquinonas/metabolismo , Lignina/metabolismo , Compuestos Férricos/metabolismo , Redes y Vías Metabólicas , Oxidación-Reducción , Madera/metabolismo , Madera/microbiología
9.
Environ Microbiol ; 15(3): 956-66, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23206186

RESUMEN

Oxidative cleavage of the recalcitrant plant polymer lignin is a crucial step in global carbon cycling, and is accomplished most efficiently by fungi that cause white rot of wood. These basidiomycetes secrete many enzymes and metabolites with proposed ligninolytic roles, and it is not clear whether all of these agents are physiologically important during attack on natural lignocellulosic substrates. One new approach to this problem is to infer properties of ligninolytic oxidants from their spatial distribution relative to the fungus on the lignocellulose. We grew Phanerochaete chrysosporium on wood sections in the presence of oxidant-sensing beads based on the ratiometric fluorescent dye BODIPY 581/591. The beads, having fixed locations relative to the fungal hyphae, enabled spatial mapping of cumulative extracellular oxidant distributions by confocal fluorescence microscopy. The results showed that oxidation gradients occurred around the hyphae, and data analysis using a mathematical reaction-diffusion model indicated that the dominant oxidant during incipient white rot had a half-life under 0.1 s. The best available hypothesis is that this oxidant is the cation radical of the secreted P. chrysosporium metabolite veratryl alcohol.


Asunto(s)
Lignina/metabolismo , Oxidantes/metabolismo , Phanerochaete/metabolismo , Madera/microbiología , Alcoholes Bencílicos/química , Semivida , Hifa/metabolismo , Oxidantes/biosíntesis , Phanerochaete/química , Phanerochaete/genética
10.
Appl Environ Microbiol ; 77(22): 7933-41, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21948841

RESUMEN

Brown rot basidiomycetes have an important ecological role in lignocellulose recycling and are notable for their rapid degradation of wood polymers via oxidative and hydrolytic mechanisms. However, most of these fungi apparently lack processive (exo-acting) cellulases, such as cellobiohydrolases, which are generally required for efficient cellulolysis. The recent sequencing of the Postia placenta genome now permits a proteomic approach to this longstanding conundrum. We grew P. placenta on solid aspen wood, extracted proteins from the biodegrading substrate, and analyzed tryptic digests by shotgun liquid chromatography-tandem mass spectrometry. Comparison of the data with the predicted P. placenta proteome revealed the presence of 34 likely glycoside hydrolases, but only four of these--two in glycoside hydrolase family 5, one in family 10, and one in family 12--have sequences that suggested possible activity on cellulose. We expressed these enzymes heterologously and determined that they all exhibited endoglucanase activity on phosphoric acid-swollen cellulose. They also slowly hydrolyzed filter paper, a more crystalline substrate, but the soluble/insoluble reducing sugar ratios they produced classify them as nonprocessive. Computer simulations indicated that these enzymes produced soluble/insoluble ratios on reduced phosphoric acid-swollen cellulose that were higher than expected for random hydrolysis, which suggests that they could possess limited exo activity, but they are at best 10-fold less processive than cellobiohydrolases. It appears likely that P. placenta employs a combination of oxidative mechanisms and endo-acting cellulases to degrade cellulose efficiently in the absence of a significant processive component.


Asunto(s)
Celulasas/análisis , Coriolaceae/enzimología , Coriolaceae/metabolismo , Proteoma/análisis , Madera/metabolismo , Madera/microbiología , Celulosa/metabolismo , Cromatografía Liquida , Clonación Molecular , Coriolaceae/química , Coriolaceae/aislamiento & purificación , ADN de Hongos/química , ADN de Hongos/genética , Expresión Génica , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Espectrometría de Masas en Tándem
11.
Bioresour Technol ; 102(16): 7451-6, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21632241

RESUMEN

Building on our laboratory-scale optimization, oxalic acid was used to pretreat corncobs on the pilot-scale. The hydrolysate obtained after washing the pretreated biomass contained 32.55g/l of xylose, 2.74g/l of glucose and low concentrations of inhibitors. Ethanol production, using Scheffersomyces stipitis, from this hydrolysate was 10.3g/l, which approached the predicted value of 11.9g/l. Diafiltration using a membrane system effectively reduced acetic acid in the hydrolysate, which increased the fermentation rate. The hemicellulose content of the recovered solids decreased from 27.86% before pretreatment to only 6.76% after pretreatment. Most of the cellulose remained in the pretreated biomass. The highest ethanol production after simultaneous saccharification and fermentation (SSF) of washed biomass with S. stipitis was 21.1g/l.


Asunto(s)
Biocombustibles , Etanol/síntesis química , Lignina/química , Ácido Oxálico/química , Saccharomycetales/metabolismo , Biomasa , Celulosa/química , Fermentación , Filtración , Polisacáridos/química
12.
J Phys Chem B ; 115(25): 8138-44, 2011 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-21604743

RESUMEN

The distributions of three sodium alkyl sulfate surfactants in dry adhesive films cast from water-based latexes were characterized using confocal Raman microscopy (CRM) and contact angle (CA) and tack measurements. Sodium dodecyl sulfate (SDS), sodium tetradecyl sulfate (STS), and sodium octadecyl sulfate (SODS) were added to dialyzed commercial adhesive latex at various concentrations. Uneven distributions were found for all three surfactants along with a tendency to enrich film-air interfaces and, to a much lesser extent, film-glass interfaces. SDS demonstrated the greatest tendency to concentrate near film surfaces followed by STS and SODS. For all three surfactants, water CA values for dried films decreased sharply with increasing concentrations in the latex, but significant differences were observed, with SDS again having the greatest impact followed by STS and SODS. Tack of dried polymer films was also found to decrease with increasing latex surfactant levels, with SDS producing the sharpest drop as well as the lowest plateau values. Results indicate that interfacial enrichment by surfactants is detectable via both CRM and CA measurements, and this enrichment can significantly affect the performance of films. Finally, surface enrichment levels are qualitatively related to measures of the surfactants' affinity for aqueous solutions, as characterized by the logarithm of their 1-octanol-water distribution coefficients (K(ow)).


Asunto(s)
Adhesivos/química , Dodecil Sulfato de Sodio/química , Tetradecil Sulfato de Sodio/química , Agua/química , Látex/química , Microscopía Confocal
13.
Appl Environ Microbiol ; 76(7): 2091-7, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20154118

RESUMEN

Brown rot basidiomycetes initiate wood decay by producing extracellular reactive oxygen species that depolymerize the structural polysaccharides of lignocellulose. Secreted fungal hydroquinones are considered one contributor because they have been shown to reduce Fe(3+), thus generating perhydroxyl radicals and Fe(2+), which subsequently react further to produce biodegradative hydroxyl radicals. However, many brown rot fungi also secrete high levels of oxalate, which chelates Fe(3+) tightly, making it unreactive with hydroquinones. For hydroquinone-driven hydroxyl radical production to contribute in this environment, an alternative mechanism to oxidize hydroquinones is required. We show here that aspen wood undergoing decay by the oxalate producer Postia placenta contained both 2,5-dimethoxyhydroquinone and laccase activity. Mass spectrometric analysis of proteins extracted from the wood identified a putative laccase (Joint Genome Institute P. placenta protein identification number 111314), and heterologous expression of the corresponding gene confirmed this assignment. Ultrafiltration experiments with liquid pressed from the biodegrading wood showed that a high-molecular-weight component was required for it to oxidize 2,5-dimethoxyhydroquinone rapidly and that this component was replaceable by P. placenta laccase. The purified laccase oxidized 2,5-dimethoxyhydroquinone with a second-order rate constant near 10(4) M(-1) s(-1), and measurements of the H(2)O(2) produced indicated that approximately one perhydroxyl radical was generated per hydroquinone supplied. Using these values and a previously developed computer model, we estimate that the quantity of reactive oxygen species produced by P. placenta laccase in wood is large enough that it likely contributes to incipient decay.


Asunto(s)
Coriolaceae/enzimología , Coriolaceae/aislamiento & purificación , Lacasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Madera/metabolismo , Madera/microbiología , Clonación Molecular , Peróxido de Hidrógeno/metabolismo , Hidroquinonas/metabolismo , Cinética , Lacasa/química , Lacasa/aislamiento & purificación , Espectrometría de Masas , Proteínas/química , Proteínas/aislamiento & purificación , Madera/química
14.
J Phys Chem B ; 113(30): 10189-95, 2009 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-19572658

RESUMEN

Migration of surfactants in water-based, pressure-sensitive adhesive (PSA) films exposed to static and cyclic relative humidity conditions was investigated using confocal Raman microscopy (CRM) and atomic force microscopy (AFM). Studied PSA films contain monomers n-butyl acrylate, vinyl acetate, and methacrylic acid and an equal mass mixture of anionic and nonionic nonylphenol ethoxylate emulsifiers. A leveling of surfactant concentration distributions is observed via CRM after films stored at 50% relative humidity (RH) are exposed to a 100% RH for an extended time period, while relatively small increases in surface enrichment occur when films are stored at 0% RH. Use of CRM for binary mixtures containing anionic or nonionic surfactant and latex that has undergone dialysis to remove nonpolymeric components indicates that surfactant-polymer compatibility governs to a great extent surface enrichment, but not changes observed with humidity variations. AFM images show that upon drying latex coatings, surfactant and other additives collect in large aggregation regions, which protrude from film surfaces. These structures are absent at high humidity, which appears to result from lateral spreading across the polymer surface. When humidity is reduced, aggregation regions reform but appear to be smaller and more evenly dispersed, and by cycling humidity between 0 and 100% RH, interfacial enrichment can be seen to diminish. Presented results provide greater insights into the distribution behavior of surfactants in latex films and potential mechanisms for observed issues arising for these systems.


Asunto(s)
Humedad , Látex/química , Tensoactivos/química , Adhesivos/química , Microscopía de Fuerza Atómica , Movimiento (Física) , Presión , Propiedades de Superficie
15.
J Phys Chem B ; 112(38): 11907-14, 2008 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-18767777

RESUMEN

Surfactant distributions in model pressure-sensitive adhesive (PSA) films were investigated using atomic force microscopy (AFM) and confocal Raman microscopy (CRM). The PSAs are water-based acrylics synthesized with n-butyl acrylate, vinyl acetate, and methacrylic acid and two commercially available surfactants, disodium (nonylphenoxypolyethoxy)ethyl sulfosuccinate (anionic) and nonylphenoxypoly(ethyleneoxy) ethanol (nonionic). The ratio of these surfactants was varied, while the total surfactant content was held constant. AFM images demonstrate the tendency of anionic surfactant to accumulate at the film surfaces and retard latex particle coalescence. CRM, which was introduced here as a means of providing quantitative depth profiling of surfactant concentration in latex adhesive films, confirms that the anionic surfactant tends to migrate to the film interfaces. This is consistent with its greater water solubility, which causes it to be transported by convective flow during the film coalescence process. The behavior of the nonionic surfactant is consistent with its greater compatibility with the polymer, showing little enrichment at film interfaces and little lateral variability in concentration measurements made via CRM. Surfactant distributions near film interfaces determined via CRM are well fit by an exponential decay model, in which concentrations drop from their highs at interfaces to plateau values in the film bulk. It was observed that decay constants are larger at the film-air interface compared with those obtained at the film-substrate side indicating differences in the mechanism involved. In general, it is shown here that CRM acts as a powerful compliment to AFM in characterizing the distribution of surfactant species in PSA film formation.


Asunto(s)
Adhesivos/química , Glicoles de Etileno/química , Tensoactivos/química , Agua/química , Emulsionantes/química , Microscopía de Fuerza Atómica , Microscopía Confocal , Presión
16.
Environ Microbiol ; 8(12): 2214-23, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17107562

RESUMEN

The fungi that cause brown rot of wood initiate lignocellulose breakdown with an extracellular Fenton system in which Fe(2+) and H(2)O(2) react to produce hydroxyl radicals (.OH), which then oxidize and cleave the wood holocellulose. One such fungus, Gloeophyllum trabeum, drives Fenton chemistry on defined media by reducing Fe(3+) and O(2) with two extracellular hydroquinones, 2,5-dimethoxyhydroquinone (2,5-DMHQ) and 4,5-dimethoxycatechol (4,5-DMC). However, it has never been shown that the hydroquinones contribute to brown rot of wood. We grew G. trabeum on spruce blocks and found that 2,5-DMHQ and 4,5-DMC were each present in the aqueous phase at concentrations near 20 microM after 1 week. We determined rate constants for the reactions of 2,5-DMHQ and 4,5-DMC with the Fe(3+)-oxalate complexes that predominate in wood undergoing brown rot, finding them to be 43 l mol(-1) s(-1) and 65 l mol(-1) s(-1) respectively. Using these values, we estimated that the average amount of hydroquinone-driven .OH production during the first week of decay was 11.5 micromol g(-1) dry weight of wood. Viscometry of the degraded wood holocellulose coupled with computer modelling showed that a number of the same general magnitude, 41.2 micromol oxidations per gram, was required to account for the depolymerization that occurred in the first week. Moreover, the decrease in holocellulose viscosity was correlated with the measured concentrations of hydroquinones. Therefore, hydroquinone-driven Fenton chemistry is one component of the biodegradative arsenal that G. trabeum expresses on wood.


Asunto(s)
Basidiomycota/metabolismo , Celulosa/metabolismo , Hidroquinonas/metabolismo , Lignina/metabolismo , Madera/microbiología , Biodegradación Ambiental , Vías Biosintéticas/fisiología , Compuestos Férricos/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción
17.
FEBS Lett ; 531(3): 483-8, 2002 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-12435597

RESUMEN

It is often proposed that brown rot basidiomycetes use extracellular reactive oxygen species (ROS) to accomplish the initial depolymerization of cellulose in wood, but little evidence has been presented to show that the fungi produce these oxidants in physiologically relevant quantities. We used [(14)C]phenethyl polyacrylate as a radical trap to estimate extracellular ROS production by two brown rot fungi, Gloeophyllum trabeum and Postia placenta, that were degrading cellulose. Both fungi oxidized aromatic rings on the trap to give monohydroxylated and more polar products in significant yields. All of the cultures contained 2,5-dimethoxyhydroquinone, a fungal metabolite that has been shown to drive Fenton chemistry in vitro. These results show that extracellular ROS occur at significant levels in cellulose colonized by brown rot fungi, and suggest that hydroquinone-driven ROS production may contribute to decay by diverse brown rot species.


Asunto(s)
Basidiomycota/metabolismo , Celulosa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Celulosa/química , Hidrólisis , Peso Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...